

Hydropower Plants: Generating and Pumping Units Solved Problems: Series 1

1 ENERGY LOSS CALCULATION

Consider a piping system from a dam to a hydropower plant (see Figure 1) including fittings and valves. Answer to the questions, using the values provided in Figure 1 and the information from appendices A and B. The gravity acceleration and water kinematic viscosity are $g = 9.81 \text{ ms}^{-2}$ and $v_{water} = 10^{-6} \text{ m}^2 \text{ s}^{-1}$.

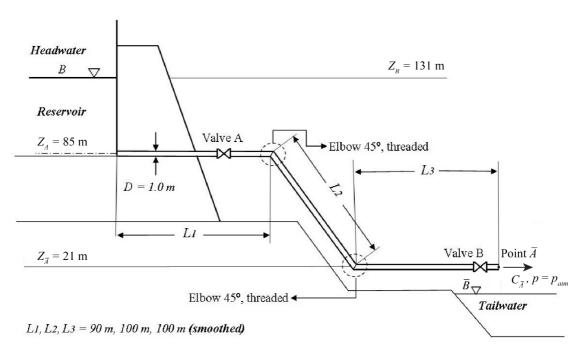


Figure 1: Dam piping system

1) Derive a relation between velocity $C_{\overline{A}}$ and head $Z_B - Z_{\overline{A}}$ based on energy balance, by i) neglecting and ii) considering energy losses $gH_{rB+\overline{A}}$:

Considering the specific energy balance equation and specific energy losses $gH_{rB+\overline{A}}$ between the headwater level B and point \overline{A} , we can derive the following equation:

$$\frac{P_B}{\rho} + \frac{C_B^2}{2} + gZ_B = \frac{P_{\overline{A}}}{\rho} + \frac{C_A^2}{2} + gZ_{\overline{A}} + gH_{rB+\overline{A}}$$
(1)

Knowing that $C_B = 0$ and $P_B = P_{\overline{A}} = P_{atm}$:

i)
$$C_{\overline{A}} = \sqrt{2g(Z_B - Z_{\overline{A}}) - 2gH_{rB+\overline{A}}}$$

ii) By neglecting specific energy losses, $gH_{rB+1} = 0$:

$$C_{\overline{A}_without_Loss} = \sqrt{2g(Z_B - Z_{\overline{A}})}$$

2) Calculate the velocity $C_{\overline{A}_without_Loss}$ at the point \overline{A} and the discharge Q by assuming all the specific energy losses are negligible.

Using the expression derived in 1):

$$C_{\overline{A} \text{ without Loss}} = \sqrt{2g(Z_B - Z_{\overline{A}})} = 46.46 \text{ m/s}^{-1}$$

Thus, using the relation between discharge, section and velocity Q = CA:

$$Q = C_{\overline{A}_without_Loss} \times \frac{\pi D^2}{4} = 46.46 \times \frac{3.1415 \times 1.0^2}{4} = 36.49 \,\mathrm{m}^3 \,\mathrm{s}^{-1}$$

3) Calculate the Reynolds number neglecting the specific energy losses.

$$Re = \frac{C_{\overline{A}_without_Loss}D}{V_{water}} = \frac{\sqrt{2g(Z_B - Z_{\overline{A}})}D}{V_{water}} = 4.6 \times 10^7$$

4) The actual discharge Q is 13.66 m³ s⁻¹. Compute the singular and distributed specific energy losses, $gH_{rB+\overline{A}_{\rm singular}}$ and $gH_{rB+\overline{A}_{\rm distributed}}$. Use Figure A.1 to find the regular specific energy losses local coefficient λ . Consider the surface of the piping system as perfectly smooth, and assume the valves A and B as gate valves, respectively fully open and $\frac{1}{2}$ closed.

The actual velocity is found from the actual discharge:

$$C_{with_Loss} = \frac{4Q}{\pi D^2} = 17.39 \,\mathrm{m \, s}^{-1}$$

Then, the energy losses coefficient is found by applying the Reynolds number to the smooth curve from Figure A.1:

$$Re = \frac{CD}{V_{\text{max}}} = 1.7 \times 10^7 \qquad \xrightarrow{\text{from figure A.1}} \lambda \approx 0.0075$$

And the distributed specific energy losses are therefore:

$$gH_{rB + \overline{A}_distributed} = \frac{C_{with_loss}^2}{2} \lambda \frac{\sum L}{D} = \frac{C_{with_loss}^2}{2} \lambda \frac{L1 + L2 + L3}{D} = 328.87 \text{ J kg}^{-1}$$

Using the specific energy losses coefficients k listed in Table B.1, the singular specific losses are:

$$gH_{rB+\bar{A}_\text{singular}} = \frac{C_{with_Loss}^2}{2} \left(k_{intake} + k_{valve\ A} + 2k_{elbow} + k_{valve\ B} \right) = \frac{17.39^2}{2} \left(0.5 + 0.15 + 2 \cdot 0.40 + 2.10 \right) = 536.96 \text{ J kg}^{-1}$$

5) If the penstock diameter is increased to 1.2 m, compute the new regular and singular specific energy losses.

Following the exact same methodology as in 4):

26.09.2024 EPFL/STI Page 2/7

$$\begin{split} &C_{new} = \frac{4Q}{\pi D_{new}^{-2}} = 12.08\,\mathrm{m\,s^{-1}} \\ &\mathrm{Re}_{new} = \frac{C_{new}D_{new}}{V_{water}} = 1.4 \times 10^7 \qquad \stackrel{from figure\ A.1}{\longrightarrow} \qquad \lambda_{new} \approx 0.0078 \\ &gH_{rB \div \overline{A}_\mathrm{singular}} = \frac{C_{new}^2}{2} \left(k_{intake} + k_{valve\ A} + 2k_{elbow} + k_{valve\ B} \right) = 259.01\,\mathrm{J\,kg^{-1}} \\ &gH_{rB \div \overline{A}_distributed} = \frac{C_{new}^2}{2} \lambda_{new} \frac{\sum L}{D_{new}} = 137.54\,\mathrm{J\,kg^{-1}} \end{split}$$

6) This time, compute the regular and singular specific energy losses if the penstock diameter is reduced to 0.8 m.

Once again following the previous methodology:

$$C_{small} = \frac{4Q}{\pi D_{small}^{2}} = 27.17 \,\mathrm{m \, s^{-1}}$$

$$\mathrm{Re}_{small} = \frac{C_{small}D_{small}}{v_{water}} = 2.2 \times 10^{7} \qquad \stackrel{from \, figure \, A.1}{\longrightarrow} \qquad \lambda_{small} \approx 0.0072$$

$$gH_{rB+\overline{A}_{-} \, singular} = \frac{C_{small}^{2}}{2} \left(k_{intake} + k_{valve \, A} + 2k_{elbow} + k_{valve \, B} \right) = 1310.32 \,\mathrm{J \, kg^{-1}}$$

$$gH_{rB+\overline{A}_{-} \, distributed} = \frac{C_{small}^{2}}{2} \lambda_{small} \frac{\sum L}{D_{-}} = 963.36 \,\mathrm{J \, kg^{-1}}$$

2 GENERAL HYDRAULIC POWER PLANT

2.1 Basic calculation for a hydraulic power plant

In Figure 2, the sketch of a hydraulic power plant located in Brazil is shown. The elevations of the headwater and tailwater reservoirs are $Z_B = 304$ m and $Z_{\bar{B}} = 252$ m, respectively. The rated discharge is Q = 539 m³ s⁻¹ and the global efficiency η is 0.91. If necessary, use the following values of gravity acceleration and water density:

$$g = 9.81 \text{ m s}^{-2}, \rho = 1'000 \text{ kg m}^{-3}$$

26.09.2024 EPFL/STI Page 3/7

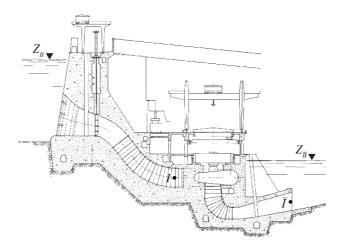


Figure 2 Sketch of the hydraulic power plant and the detail of the turbine

7) Express the potential specific energy of the installation by Z_B , $Z_{\overline{B}}$, and g.

The potential specific energy of the installation is $g(Z_B - Z_{\overline{B}})$

8) Taking into account the specific energy losses gH_{rB+I} between B and I, and $gH_{r\overline{I}+\overline{B}}$, between \overline{I} and $\overline{B}(gH_r>0)$, express the available specific energy E by g, Z_B , gH_{rB+I} and $gH_{r\overline{I}+\overline{B}}$.

The available specific energy can be written as $E = g(Z_B - Z_{\overline{B}}) - gH_{rB+I} - gH_{r\overline{I}+\overline{B}}$

9) Calculate the water velocity in the penstock. Use the value of the penstock diameter $D_{penstock} = 7 \text{ m}$.

Using the same methodology as in Exercise 1, the water velocity in the penstock is:

$$C_{penstock} = \frac{4Q}{\pi D_{penstock}^2} \cong 14.01 \,\mathrm{m \ s^{-1}}$$

10) Calculate the Reynolds number in the penstock using the kinetic viscosity $v = 10^{-6}$ m² s⁻¹.

The Reynolds number in the penstock is
$$Re_{penstock} = \frac{C_{penstock} \cdot D_{penstock}}{V} \cong 9.80 \times 10^7$$

2.2 Practical study for the specific energy loss

Here, the specific energy loss calculation is applied to the practical case for the hydraulic power station detailed in *Section 2.1*.

11) Knowing that the regular specific energy loss in a penstock can be expressed as:

$$gH_{r_{1+2}} = K_r \frac{C^2}{2} = \lambda \frac{L_{1+2}}{D} \frac{C^2}{2} \tag{1}$$

Express the distributed specific energy loss gH_r as a function of the local coefficient of the distributed specific losses λ , the length of the penstock $L_{penstock}$, the diameter of the penstock $D_{penstock}$ and the discharge Q.

Then, reflect on the importance of the penstock diameter and explain why it is a key parameter to reduce the specific energy loss under a constant discharge.

26.09.2024 EPFL/STI Page 4/7

$$gH_r = \lambda \frac{L_{penstock}}{D_{penstock}} \frac{C_{penstock}^2}{2} = \lambda \frac{8L_{penstock}Q^2}{\pi D_{penstock}^5}$$

The losses are a function of the penstock diameter to the power of 5 (!) Thus, for the same discharge, doubling the diameter of the penstock would divide the losses by a factor of 32. However, increasing the penstock diameter induces higher construction costs.

12) The local coefficient of the distributed specific energy losses λ is dependent on the Reynolds number Re and can be calculated by the Churchill formula as follows:

$$\lambda = 8 \left[\left(\frac{8}{\text{Re}} \right)^{12} + \frac{1}{\left(A + B \right)^{\frac{3}{2}}} \right]^{\frac{1}{12}}$$
with $A = \left[2.457 \cdot \ln \frac{1}{\left(\frac{7}{\text{Re}} \right)^{0.9} + 0.27 \frac{k_s}{D_{penstock}}} \right]^{16}$ and $B = \left(\frac{37530}{\text{Re}} \right)^{16}$ (2)

Where k_s is the equivalent sand roughness, whose value which depends on the penstock material. For instance, $k_s = 10^{-6}$ for stainless steel and $k_s = 3 \times 10^{-3}$ for rough concrete.

Calculate the local coefficient values λ_{steel} and $\lambda_{concrete}$ when using i) stainless steel and ii) rough concrete as the penstock material. Then, calculate the distributed specific energy loss in the penstock for both cases. Use the penstock length $L_{penstock} = 100$ m.

$$A_{steel} = 8.4809 \times 10^{24}$$
 , $B_{steel} = 2.1264 \times 10^{-55}$, and $\lambda_{steel} = 0.0061$
 $A_{concrete} = 3.6429 \times 10^{21}$, $B_{steel} = 2.1264 \times 10^{-55}$, and $\lambda_{concrete} = 0.0161$

The distributed specific energy losses are thus:

i)
$$gH_{rB+I} = \lambda_{steel} \frac{L_{penstock}}{D_{penstock}} \frac{C_{penstock}^2}{2} = 8.58 \text{ J kg}^{-1}$$

ii)
$$gH_{rB+I} = \lambda_{concrete} \frac{L_{penstock}}{D_{penstock}} \frac{C_{penstock}^2}{2} = 22.61 \text{ J kg}^{-1}$$

Which means that building the penstock with concrete results in 3 times more losses than with stainless steel.

13) Assuming that the total specific energy losses of the singular specific energy losses (intake, elbow, etc...) and the specific energy losses $gH_{r\bar{t}+\bar{B}}$ are equivalent to 1% of the gross head, calculate the available specific energy E for both cases.

Using the fact that $gH_{r\bar{l}+\bar{B}}$ can simply be expressed as a 1% reduction of the gross head, meaning a 1% reduction in specific potential energy, and the values of the distributed energy losses computed in 12):

$$E = g(Z_B - Z_{\overline{B}}) - gH_{rB+I} - gH_{r\overline{I}+\overline{B}} = 0.99g(Z_B - Z_{\overline{B}}) - \lambda \frac{L_{penstock}}{D_{penstock}} \frac{C_{penstock}^2}{2}$$

Which results in:

26.09.2024 EPFL/STI Page 5/7

i)
$$E = 496.44 J kg^{-1}$$

ii)
$$E = 482.41 J kg^{-1}$$

14) For both cases, calculate the available power P and compare the difference between both cases.

The available power is defined as $P = \eta \rho QE$, with η the global efficiency given in Section 2.1. Thus: i) P = 242.8 MW

ii)
$$P = 235.9 \, MW$$

The power difference is thus $\Delta P = 6.9$ MW, which represents 2.8%.

15) In this power plant, the grid frequency is $f_{grid} = 60$ Hz and the number of poles is $z_p = 88$. Deduce the angular rotational frequency of the runner ω .

Using the definition of the angular rotational velocity:

$$\omega = 2\pi n = 2\pi \frac{2f_{grid}}{z_p} \cong 8.57 \,\text{rad s}^{-1}.$$

26.09.2024 EPFL/STI Page 6/7

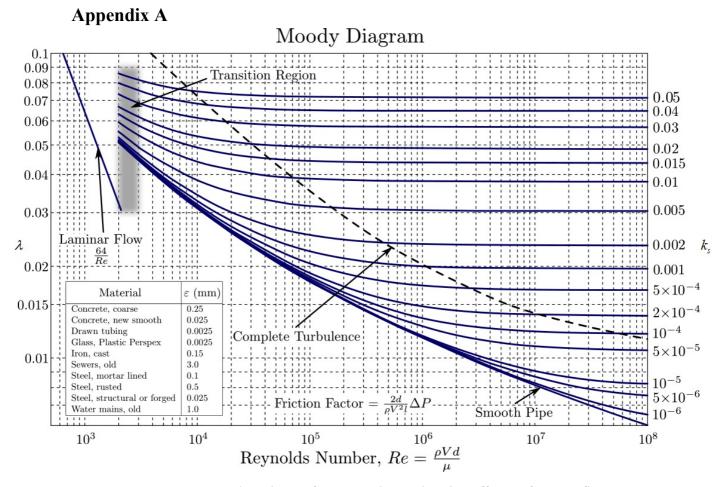


Figure A.1: Distributed specific energy losses local coefficient for pipe flow

Appendix B

Table B.1: Specific energy loss coefficients of bends, elbows, fittings, etc.

Fitting	k [-]
Sharp intake connection	0.5
Globe valve, fully open	10.0
Angle valve, fully open	2.0
Gate valve, fully open	0.15
Gate valve, 1/2 closed	2.10
Swing check valve, flow	2.0
Elbow 90° – flanged	0.3
Elbow 90° – threaded	1.50
Long radius 90°, flanged	0.20
Long radius 90°, threaded	0.70
Elbow 45°, threaded	0.40

26.09.2024 EPFL/STI Page 7/7